1－Way versus 2－Way Alternating Multi－Counter Automata with Sublinear Space

Tsunehiro YOSHINAGA＊1 and Makoto SAKAMOTO＊2

Abstract

This paper investigates the difference in the accepting powers between 1－way and 2－way operations of sublinear space－bounded alternating multi－counter automata．For each $l \geq 1$ and any function $L(n)$ ，let weak－1ACA $(l, L(n))$（resp．，strong－2ACA $(l, L(n))$ ）denote the class of sets accepted by weakly 1－way （resp．，strongly 2－way）$L(n)$ space－bounded alternating l－counter automata．We show that for any function $L(n)$ such $\log L(n)=o(\log n)$ ，strong－2ACA $(1, \log n)-\cup_{1 \leq l<\infty}$ weak－1ACA $(l, L(n)) \neq \phi$ ．So，we have $m-1 \mathrm{ACA}(l, L(n)) \subsetneq m-2 \mathrm{ACA}(l, L(n))$ for each $l \geq 1$ ，each $m \in\{$ strong，weak $\}$ and any function $L(n) \geq$ $\log n$ such that $\log L(n)=o(\log n)$ ．

Key Words：alternating multi－counter automata，multi－inkdot，universal states，sublinear space， computational complexity

1．Introduction and preliminaries

A multi－counter automaton（mca）is a mul－ ti－pushdown automaton whose pushdown stores operate as counters，i．e．，each storage tape is a pushdown tape of the form Z^{i}（ Z is a fixed symbol）． It is shown in Ref．1）that 2－counter automata without time or space limitations have the same power as Turing machines；however，when time or space restrictions are applied，a different situation occurs（See，for example，Refs．2），3））．

From a theoretical point of view，in this paper， we are interested in knowing fundamental proper－ ties of alternating mca＇s（amca＇s），and especially investigate the essential difference between 1－way and 2 －way operations in the accepting powers of amca＇s which have sublinear space，in correspond－ ence to the result in Ref．4）．

A 2－way alternating multi－counter automaton M is a generalization of a two－way nondeterministic multi－counter automaton in the same sense as Ref． 5）．

The state set of M is partitioned into universal and existential states．Intuitively，in a universal state M splits into some submachines which act in paral－ lel，and in an existential state M nondeterministi－ cally chooses one of possible subsequent actions．M
has the left endmarker＂ϕ＂and the right endmarker ＂$\$$＂on the input tape，reads the input tape right or left，and can enter an accepting state only when falling off $\$$ ．In one step M can also increment or decrement the contents（i．e．，the length）of each counter by at most one．

For each $l \geq 1$ ，we denote a two－way alternating l－counter automaton by $2 \mathrm{aca}(l)$ ．An instantaneous description（ID）of $2 \mathrm{aca}(l) M$ is an element of

$$
\sum^{*} \times \mathbb{N} \times S_{M},
$$

where $\sum\left(\$, \quad \notin \notin \sum\right)$ is the input alphabet of M, N denotes the set of all non－negative integers，and

$$
S_{M}=Q \times\left(\{Z\}^{*}\right)^{l}
$$

where Q is the set of states．The first and second components，w and i ，of an ID

$$
I=\left(w, i,\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)\right)
$$

represent the input string and the input head posi－ tion，respectively．The third component $\left(q,\left(\alpha_{1}, \alpha_{2}\right.\right.$, $\left.\ldots, \alpha_{l}\right)$ ）of I represents the state of the finite control and the contents of the l counters．I is said to be a universal（existential，accepting）ID if q is a uni－ versal（an existential，an accepting）state．An ele－ ment of $S_{M},\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$ ，is called a storage state of M ．

[^0]The initial ID of M on $w \in \sum^{*}$ is

$$
I_{M}(w)=\left(w, 0,\left(q_{0},\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)\right)\right),
$$

where q_{0} is the initial state of M and $\lambda_{i}(1 \leq i \leq l)$ denotes the empty string．

We write $I \vdash_{M} I^{\prime}$ and say that I^{\prime} is a successor of I if an ID I^{\prime} follows from an ID I in one step，ac－ cording to the transition function of M ．

A computation path of M on input w is a se－ quence

$$
I_{0} \vdash_{M} I_{1} \vdash_{M} \ldots \vdash_{M} I_{n} \quad(n \geq 0)
$$

where $I_{0}=I_{M}(w)$ ．
A computation tree of M on input w is a finite， nonempty tree such that the root is labeled by the initial ID I_{0} ，and the children of any non－leaf node π labeled by a universal（an existential）ID，$\ell(\pi)$ ，in－ clude all（one）of the immediate successors of $\ell(\pi)$ ．

A computation tree of M on input w is accepting if all the leaves are labeled by accepting ID＇s．We say that M accepts w if there is an accepting com－ putation tree of M on w ．

For each storage state $\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$ and for each $w \in \sum^{*}$ ，let a $\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$－computation tree of M on w be a computation tree of M whose root is labeled with the $\operatorname{ID}\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$ ．（That is，a $\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$－computation tree of M on w is a computation tree which represents a computa－ tion of M on $w \$$ starting with the input head on the leftmost position of w an d with the storage state（ q ， $\left.\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$ ）．
$\mathrm{A}\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$－accepting computation tree of M on w is a $\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$－computation tree of M on w whose leaves are all labeled with ac－ cepting ID＇s．

For any function $L(n), M$ is weakly（strongly） $L(n)$ space－bounded if for any $n \geq 1$ and any input w of length n accepted by M ，there is an accepting computation tree τ of M on w such that for each node π of τ（if for any $n \geq 1$ and any input w of length n（accepted or not），and each node π of any computation tree of M on w ），the length of each counter of the ID $\ell(\pi)$ is bounded by $L(n)$ ．That is， for each α_{i} in the ID $\ell(\pi)=\left(w, i,\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots\right.\right.\right.$ ， $\left.\alpha_{l}\right)$ ），$\left|\alpha_{i}\right| \leq L(n)(1 \leq i \leq l)$ ．

A 1 －way alternating l－counter automata（ 1 aca (l) ） is a $2 \mathrm{aca}(l)$ whose input head cannot move to the left．

For each $l \geq 1$ and any function $L(n)$ ，let denote by weak－2ACA（l，L（n））and strong－2ACA（l，L（n）） the classes of sets accepted by weakly and strongly $L(n)$ space－bounded $2 \mathrm{aca}(l)$ ，respectively and by weak－1 $\mathrm{ACA}(l, L(n))$ and strong－1 $\mathrm{ACA}(l, L(n))$ the classes of sets accepted by weakly and strongly $L(n)$ space－bounded laca (l) ，respectively．

For any function $L(n)$ ，we denote by weak－ 2ATM $(L(n))$（resp．，weak－1ATM $(L(n))$ ）the class of sets accepted by weakly 2 －way（resp．， 1 －way）
$L(n)$ space－bounded alternating Turing machines （aTm＇s）．（If necessary，see Ref．4）for weakly and strongly $L(n)$ space－bounded 1 －way and 2 －way aTm＇s）．

Section 2 investigates the difference in the ac－ cepting power between 1 －way and 2 －way amca＇s with sublinear space，and shows that strong－ $2 \mathrm{ACA}(1, \log n)-\cup_{1 \leq k \infty w e a k-1 A C A}(l, L(n)) \neq \phi$ for any function $L(n)$ such that $\log L(n)=o(\log n)$ ． Section 3 concludes this paper by giving a few open problems．

2．Result

It is shown in Ref．4）that

$$
\begin{aligned}
& \text { weak- } 2 \mathrm{ATM}(\log \log n) \\
& \quad-\text { weak- } 1 \mathrm{ATM}(o(\log n)) \neq \phi .
\end{aligned}
$$

Therefore，for any function $L(n)$ such that $\log \log n$ $\leq L(n)=o(\log n)$ ，it follows that

$$
\text { weak-1 } \mathrm{ATM}(L(n)) \subsetneq \text { weak-2ATM }(L(n)) \text {. }
$$

To obtain our corresponding result，we first need the following lemma．From now on，logarithms are base 2 ．

Lemma 2．1：Let

$$
\begin{aligned}
T=\{ & \left\{B(1) \# B(2) \# \ldots \# B(n) 2 w c w_{1} c w_{2} c \ldots c w_{k}\right. \\
& \in\{0,1,2, c, \#\}^{+} \mid n \geq 2 \\
& \& w \in\{0,1\}^{+} \&|w|=[\log n \mid \\
& \& k \geq 1 \& \forall i(1 \leq i \leq k)\left[w_{i} \in\{0,1\}^{+}\right] \\
& \left.\& \exists j(1 \leq j \leq k)\left[w=w_{j}\right]\right\},
\end{aligned}
$$

where for each string $v,|v|$ denotes the length of v ， and for each integer $m \geq 1, B(m)$ denotes the string in $\{0,1\}^{+}$that represents the integer m in binary notation（with no leading zeros），so $|B(m)|=\lceil\log m\rceil$ ． Then
（1）$T \in$ strong－2ACA $(1, \log n)$ and
（2）$T \notin \cup_{1 \leq l<\infty}$ weak－1ACA $(l, L(n))$ for any function $L(n)$ such that $\log L(n)=o(\log n)$ ．

Proof：（1）One can construct a strongly $\log n$ space－bounded $2 \mathrm{aca}(1) M$ which acts as follows． Suppose that an input string：
$\phi y_{1} \# y_{2} \# \ldots y_{n} 2 w c w_{1} c w_{2} c \ldots c w_{k} \$$ ，
where $n \geq 2, k \geq 1$ ，and $y_{i} ’ \mathrm{~s}, w$ and w_{j}＇s are in $\{0$ ， $1\}^{+}$is presented to M（Input strings in the form dif－ ferent from the above can easily be rejected by M ）．

It is shown in Ref．3）that the set $\{B(1) \#$ $B(2) \# \ldots \# B(n) \mid n \geq 2\}$ can be accepted by a strongly $\log n$ space－bounded 2－way deterministic 1－counter automaton．So，M can store $\lceil\log n\rceil(=|B(n)|)$ stack symbols in the counter using the initial segment $B(1) \# B(2) \# \ldots \# B(n)$ of the input（Of course，M nev－
er enters an accepting state if $y_{k} \neq B(k)$ for some $1 \leq$ $k \leq n)$ ．

If M successfully complete this，then checks by using $\lceil\log n\rceil$ stack symbols stored in the counter， whether $|w|=\lceil\log n\rceil$ ．

After that，M again stores $\lceil\log n\rceil$ stack symbols in the counter using $|w|(=\lceil\log n\rceil)$ and existentially choses some $j(1 \leq j \leq k)$ and checks $w=w_{j}$ ．This check can easily be done by first checking that $\left|w_{j}\right|$ $=\lceil\log n\rceil$ and then universal checking that $w(p)=$ $w_{j}(p)$ for each $1 \leq p \leq|w|=\left|w_{j}\right|=\lceil\log n\rceil$ ，where for each string v and each integer $t(1 \leq t \leq|v|), v(t)$ de－ note the t－th symbol（from the left）of v ．

It will be obvious that $\lceil\log n\rceil$ space is sufficient， and M accepts the language T ．
（2）Suppose to the contrary that there exists a weakly $L(n)$ space－bounded $1 \mathrm{aca}(l) M$ accepting the language T ，where $\log L(n)=o(\log n)$ and $l \geq 1$ is some constant．

For each $n \geq 2$ ，let

$$
\begin{gathered}
V(n)=\left\{B(1) \# B(2) \# \ldots \# B(n) 2 w c w_{1} c w_{2} c \ldots c w_{n}\right. \\
\in T||w|=\lceil\log n] \& \\
\left.\forall i(1 \leq i \leq n)\left[\left|w_{i}\right|=[\log n]\right]\right\} \text { and } \\
W(n)=\left\{c w_{1} c w_{2} c \ldots c w_{n} \in\{0,1, c\}^{+} \mid\right. \\
\left.\forall i(1 \leq i \leq n)\left[\left.w_{i} \in\{0,1\}\right|^{\log n}\right]\right\} .
\end{gathered}
$$

We consider the computations of M on the strings in $V(n)$ ．

Note that for each $x \in V(n)$,

$$
\begin{aligned}
\cdot|x| & =|B(1) \# B(2) \# \ldots \# B(n)|+([\log n]+1)(n+1) \\
& =r(n) \\
& =O(n \log n) \text { and }
\end{aligned}
$$

－there exists an accepting computation tree τ of M on x such that $\left|\alpha_{i}\right| \leq L(r(n))(1 \leq i \leq l)$ ，where α_{i} is in the $\operatorname{ID} \ell(\pi)=\left(w, i,\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)\right)$ for each node π of the tree τ ．
Let $C(n)$ denote the set of all possible storage states of M when M in the computation uses at most $L(r(n))$ stack symbols in each counter，and let $u(n)$ $=|C(n)|$ ．Then，$u(n)=O\left(L(r(n))^{l}\right)$ ．

For each storage state $\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$ of M and for each y in $W(n)$ ，let

$$
M_{y}\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)
$$

$=1$ if there exists a $\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$－accepting computation tree of M on y such that for each node π of the tree，the storage state（ q ， $\left.\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)$ of the ID $\ell(\pi)$ is in $C(n)$ ，
$=0$ otherwise．
For any strings y and z in $W(n)$ ，we say y and z are M－equivalent if for each storage state $\left(q,\left(\alpha_{1}, \alpha_{2}\right.\right.$ ， $\left.\left.\ldots, \alpha_{l}\right)\right)$ of M with $\left|\alpha_{i}\right| \leq L(r(n))(1 \leq i \leq l)$ ，

$$
M_{y}\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)=M_{z}\left(q,\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)\right)
$$

Clearly M－equivalence is an equivalence relation on
strings in $W(n)$ ，and there are at most

$$
e(n)=O\left(t^{u(n)}\right)
$$

M－equivalent classes，where t is a constant．We de－ note these M－equivalence classes by $E_{1}, E_{2}, \ldots, E_{e(n)}$ ．

For each $y=w c w_{1} c w_{2} c \ldots c w_{n}$ in $W(n)$ ，let

$$
b(y)=\left\{u \in\{0,1\}^{+} \mid \exists i(1 \leq i \leq n)\left[u=w_{i}\right]\right\} .
$$

Furthermore，for each $n \geq 2$ ，let

$$
R(n)=\{b(y) \mid y \in W(n)\}
$$

Then

$$
|R(n)|={ }_{n} C_{1}+{ }_{n} C_{2}+\ldots+{ }_{n} C_{n}=2^{n}-1
$$

（Intuitively，$|R(n)|$ is equal to the number of all the nonempty subsets of $\left.\{0,1\}^{\log n} 1\right)$ ．

Since $e(n)=O\left(t^{u(n)}\right)$ ，that is，$e(n) \leq t^{\prime u(n)}$ ，it fol－ lows that

$$
\log \log e(n) \leq c_{1} \log u(n)
$$

for some constants $t>0, t^{\prime}>0$ and $c_{1}>0$ ．
Since $u(n)=O\left(L(r(n))^{l}\right)$ ，that is，$u(n) \leq$ $c_{2} L(r(n))^{l}$ ，it follows that

$$
\log u(n)=c_{3} \log L(r(n))
$$

for some constants $c_{2}>0$ and $c_{3}>0$ ．
Since $\log L(r(n))=o(\log n)$ ，it follows that

$$
\log L(r(n))=o(\log r(n))
$$

Since $r(n)=O(n \log n)$ ，that is，$r(n) \leq c_{4} n \log n$ ，it follows that

$$
\log r(n) \leq c_{5} \log n
$$

for some constants $c_{4}>0$ and $c_{5}>0$ ．Hence，from the equations above，we have

$$
\begin{aligned}
\log \log e(n) & \leq c \log u(n) \leq c^{\prime} \log L(r(n)) \\
& =o(\log r(n)) \leq o(\log n)
\end{aligned}
$$

for some constants $c>0$ and $c^{\prime}>0$ ．
On the other hand，since $|R(n)|=2^{n}-1$ ，that is， $\log \log |R(n)|=\log n$ ，it follows that

$$
\log \log e(n)<\log \log |R(n)|
$$

Therfore，we have

$$
e(n)<|R(n)|
$$

for n large enough．For such n ，the must be some Q and $Q^{\prime}\left(Q \neq Q^{\prime}\right)$ in $R(n)$ and some $E_{i}(1 \leq i \leq e(n))$ such that the following statement holds：
＂There exist two strings $y^{\prime}=B(1) \# B(2) \# . . . \# B(n) 2 w y$ and $z^{\prime}=B(1) \# B(2) \# \ldots \# B(n) 2 w z$ such that
（ i ）$|w|=\lceil\log n\rceil$ ，
（ii）$y, z \in W(n)$ ，
（iii）$b(y)=Q$ and $b(z)=Q^{\prime}$ ，
（iv）w is in Q ，but not in Q^{\prime} ，and
（ v ）both y and z are in E_{i}（i．e．，y and z are M－ equivalent）＂．

As is easily seen，y^{\prime} is in $V(n)$ ，and so there ex－ ists an accepting computation tree of M on y^{\prime} such that for each node π of the tree，the contents of each counter in $\ell(\pi)$ are bounded by $L(r(n))$ ．From this tree，we easily construct an accepting computation tree of M on z^{\prime} such that for each node π of the tree， the contents of each counter in $\ell(\pi)$ are bounded by $L(r(n))$ ．Thus，we can conclude that z^{\prime} is also ac－ cepted by M ，which is a contradiction，because z^{\prime} is not in T ．

From Lemma 2．1，we have：

Theorem 2．2：

strong－2ACA $(1, \log n)$

$$
-\cup_{1 \leq l<\infty} \text { weak-1 ACA }(l, L(n))=\phi
$$

for any function $L(n)$ such that $\log L(n)=o(\log n)$ ．
Corollary 2．3：For each $m \in\{$ strong，weak $\}$ ，each l ≥ 1 and any function $L(n)$ such that $L(n) \geq \log n$ and $\log L(n)=o(\log n)$,

$$
m-1 \mathrm{ACA}(l, L(n)) \subsetneq m-2 \mathrm{ACA}(l, L(n))
$$

3．Conclusion

We have investigated the accepting power of sublinear space－bounded 1－way and 2－way amca＇s and show that for any function $L(n)$ such that \log $L(n)=o(\log n)$ ，
strong－2ACA $(1, \log n)$
$-\cup_{1 \leq l<\infty}$ weak－1ACA $(l, L(n))=\phi$.
Finally，we conclude this paper by giving two open problems relating this research：

For each $m \in\{$ weak，strong $\}$ ，each $d \in\{1,2\}$, each $l \geq 1$ and any function $\log n \leq L(n)$ such that $\log L(n)=o(\log n)$,
（1）does exist an infinite hierarchy among m－d ACA （ $l, L(n)$ ）＇s？and
（2）is $m-d \mathrm{ACA}(l, L(n))$ closed under Boolean oper－ ation，Kleene closure，concatenation，and ho－ momorphism？

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 17K00025．

References

1）Minsky，M．L．：Recursive unsolvability of Post＇s problem of ＇Tag＇and other topics in the theory of Turing Machines， Annals of Math．，Vol．74，No．3，pp．437－455（1961）．
2）Inoue，K．，Ito，A．and Takanami，I．：A note on real－time one－way alternating multicounter machines，Theoret．Com－ put．Sci．，Vol．88，pp．287－296（1991）．
3）Yoshinaga，T．and Inoue，K．：A note on alternating mul－ ti－counter automata with small space，Trans．of IPSJ．，Vol．36， No．12，pp2741－2753（1995）．
4）Ito，A．，Inoue，K．and Takanami，I．：A note alternating Turing machines using small space，IEICE Trans．，Vol．E70，NO．10， pp．990－996（1987）．
5）Chandra，A．K．，Kozen D．C．and Stockmeyer，L．J．：Alterna－ tion，J．ACM，Vol．28，No．1，pp．114－133（1981）．
（Received September 3，2018）

[^0]: ${ }^{* 1}$ Department of Computer Science and Electrics Engineering
 ＊2 University of Miyazaki

